

COMPLEX NETWORKS

FastEnsemble: A new scalable ensemble clustering method

Presenter: Minhyuk Park

Yasamin Tabatabaee, Eleanor Wedell, Tandy Warnow

University of Illinois Urbana-Champaign

12/10/24

- Input: Simple graph without a distance matrix
- Output: Partitioning of nodes into disjoint sets
- E.g., Louvain (modularity), Leiden (modularity, CPM), Stochastic Block Models (SBM), Infomap, Markov Cluster Algorithm (MCL)

Why Ensemble Methods?

- Community detection methods often include randomness
- Ensemble methods gather reliable signal from multiple clustering outputs

- FastConsensus (Tandon et al., 2019):
 - Start with multiple runs of a clustering method on an input network
 - Create consensus matrix (co-classification matrix)
 - Remove weak links
 - Perform triadic closure
 - Repeat from first step until convergence
- Ensemble Clustering for Graphs ECG (Poulin and Théberge, 2018):
 - Start with multiple runs of the Louvain algorithm (modularity)
 - Create consensus matrix (co-classification matrix)
 - Set minimum edge weight to edges not in a 2-core in the original graph
 - Run the Louvain algorithm on this new matrix

FastEnsemble Design Goals

Ι

- Avoid iterations to improve runtime
- Generalize the ensemble step to allow for arbitrary clustering methods

- FastEnsemble takes 2 parameters:
 - *np* num partitions (clusterings)
 - t threshold
- Given a network:
 - Generate np clusterings on the network
 - Generate a new weighted network
 - Remove edges with weight less than t
 - Run a clustering method on the new weighted network
- Note: **Strict consensus** is FastEnsemble with *t* equal to 1

Experiments in This Study

- We show results for Louvain, Leiden-mod, and Leiden-CPM
- Experiments:
 - I: Default parameter exploration
 - 2: Evaluation of modularity pipelines (ECG, FastEnsemble, FastConsensus)
 - 3: Clustering on random graphs (results not shown here)
 - 4: Resolution limit experiment (ring-of-cliques)
 - 5: Evaluation of Leiden-mod and Leiden-CPM with FastEnsemble

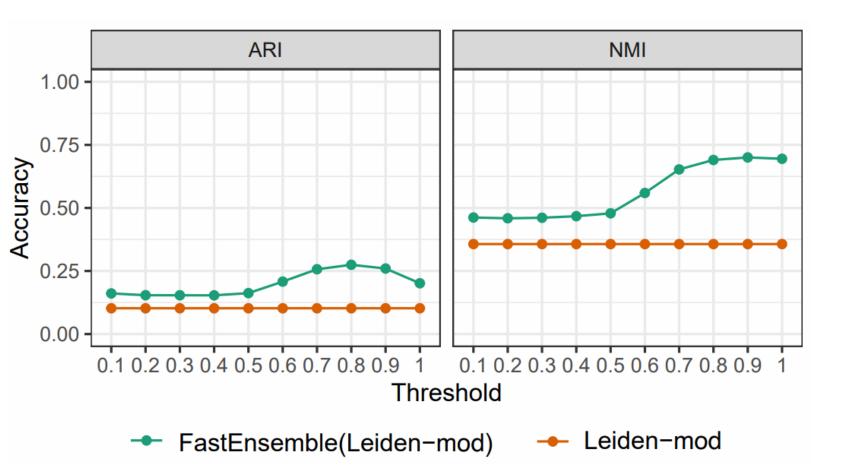
Datasets used in the study

8

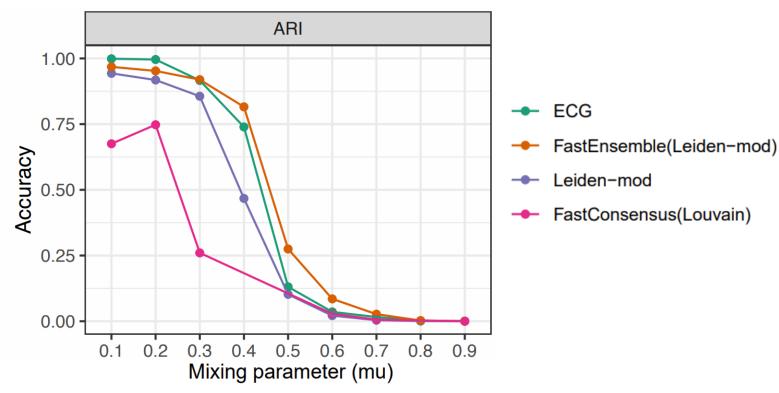
Network	Expt.	nodes	edges	mixing param
LFR Training	1,2	10,000	58272-59584	0.196 - 0.978
Erdős-Rényi	3	1000	470 - 50,025	1.0
Erdős-Rényi+ LFR	3	2000	4776 - 53,917	0.486 - 0.572
Ring-of-Cliques	4	90-10,000	4140-460,000	0.02
$LFR cit_hepph$	2,5	$34,\!546$	$\sim 431 K$	0.086 - 0.781
LFR wiki_topcats	2,5	1,791,489	$\sim 24M$	0.199 - 0.793
LFR cen	2,5	3,000,000	$\sim 21M$	0.180 - 0.646
m LFR OC	2,5	3,000,000	$\sim 55M$	0.129 - 0.871
$LFR cit_patents$	2,5	3,774,768	$\sim 16M$	0.114 - 0.807

Low mixing parameter networks are easy to cluster

Setting the default threshold *t*

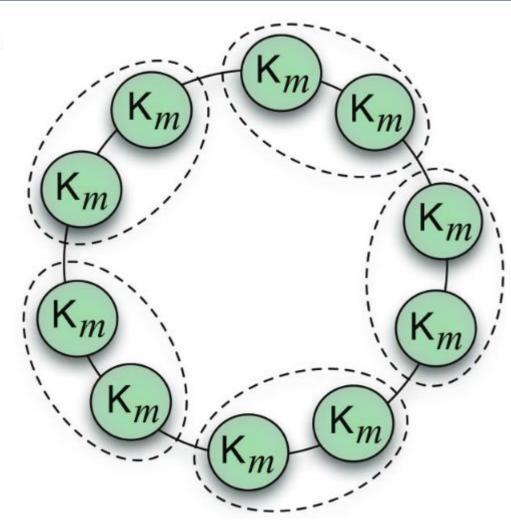


- Training dataset used was 10k-node LFR synthetic networks with varying mixing parameters
- Results shown here are for mixing parameter 0.5
- t = 0.8 selected



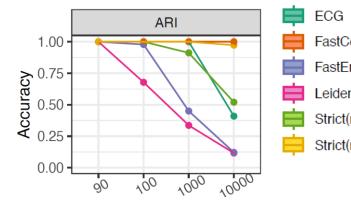
- Training datasets with varying mixing parameters
- ECG best for mixing parameters < 0.4</p>
- FastEnsemble best for mixing parameters >= 0.4

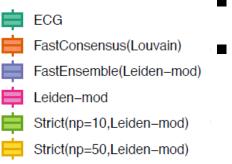
Ring-of-cliques and Resolution Limit

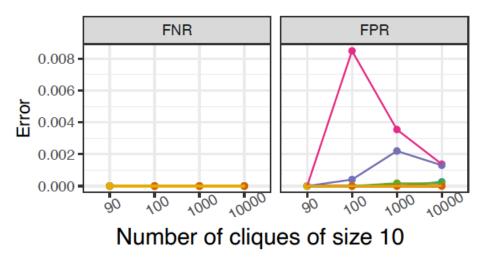


- Figure from Fortunato and Barthelemy. PNAS 2007
- Modularity optimization will group adjacent cliques into a single cluster as the number of cliques increases
- Theory predicts correct clustering given at most 90 cliques of size 10 but afterwards will merge cliques

Ring of 10-cliques Network Results



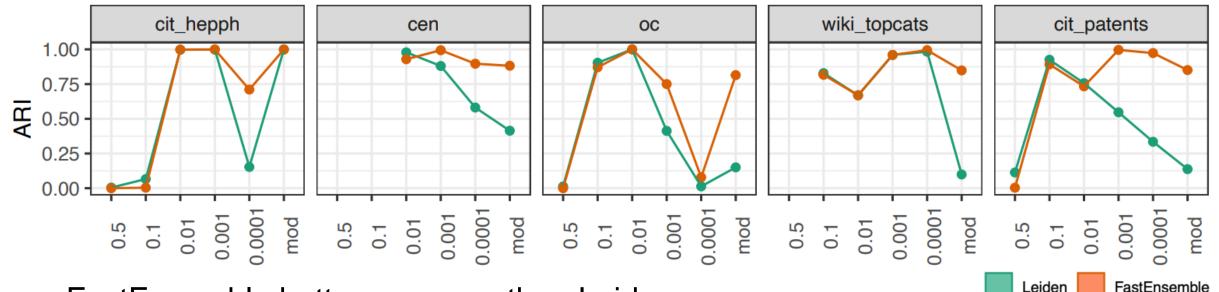




- Strict: FastEnsemble(t = 1)
- Trends:
 - All methods have 0 FNR (no cliques split)
 - Leiden-mod had the worst accuracy
 - FastEnsemble second worst accuracy
 - ECG and Strict(np=10) nearly as accurate as top methods
 - FastConsensus and Strict(np=50) most accurate

- Leiden-CPM(γ) where γ is the resolution parameter
- Dataset generation:
 - Compute numeric parameters based on an empirical network and clustering
 - Provide numeric parameters to LFR
- Evaluation:
 - Re-cluster LFR network using the same clustering method
 - Cluster LFR network using FastEnsemble given the same clustering method
- Note: some LFR created networks were omitted
 - LFR failed to compute on CEN 0.1, 0.5 with provided parameters
 - wiki_topcats 0.5 has disconnected ground truth clusters

Real-world inspired Synthetic LFR Network Results



- FastEnsemble better accuracy than Leiden on:
 - Leiden-mod based networks
 - Low resolution value Leiden-CPM based networks
- Note: Mixing parameter small for Leiden-mod and Leiden-CPM with low resolution parameter values, increases with resolution parameter

		NMI	runtime
LFR cen mod	FastEnsemble(default	t) 0.988	12h 8m 47s
	FastConsensus	n.d.	>2d
	\mathbf{ECG}	0.980	$12h \ 38m \ 1s$
	Leiden-mod	0.897	2m $31s$
LFR oc mod	FastEnsemble(default	t) 0.989	$1d \ 3h \ 52m \ 6s$
	FastConsensus	n.d.	>2d
	\mathbf{ECG}	0.948	$21\mathrm{h}~58\mathrm{m}~30\mathrm{s}$
	Leiden-mod	0.838	3m $37s$

- n.d. indicates no output after 48 hours
- Leiden-mod extremely fast but less accurate
- FastConsensus fails to complete on these networks
- ECG vs FastEnsemble: similar runtimes, slight accuracy improvement for FastEnsemble

- FastEnsemble increases robustness of input clustering method, especially for small mixing parameters
- FastEnsemble vs ECG:
 - ECG more accurate on lower mixing parameter
 - FastEnsemble more accurate on higher mixing parameters
- FastEnsemble vs FastConsensus:
 - Mixed relative accuracy
 - FastEnsemble more scalable
- StrictConsensus almost as accurate as FastConsensus on ring-of-cliques network:
 - Useful for avoiding false discovery

- Combining different clustering methods
- Evaluation based on FNR, FPR, and AGRI (Poulin, V. and Théberge, F., IEEE Transactions on Pattern Analysis and Machine Intelligence 2020)
- Input graphs with edge weights

Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN